
1

Novice and Expert Programmers

Gild Project

University of Victoria
Jeff Michaud

Overview of Presentation

l General Definitions
l Psychological Studies

– Novices

– Expert

– Common

l Novice-Expert Continuum

l Discussion

General Definitions

l Expert: someone who is more than just
proficient in an area

l Novice: someone who is just entering an
area

2

In the beginning

l ‘Psychological’ studies of programmers
started in the 1970s

l Results are unfortunately not reliable
– Weak methodologies

– Complex programming practices

– No psychologists …

Enter the Psychologists

l Proper research methodologies used
l Studies start to show consistent results:

– novices could understand the syntax and
semantics of individual statements

– but could not combine the statements into
programs to solve the problem

Results of the Studies: Novices

l lack an adequate mental model of the area [Kessler and Anderson,
1989]

l are limited to a surface knowledge of subject, have fragile knowledge
(something the student knows but fails to use when necessary) and
neglect strategies [Perkins and Martin, 1986]

l use general problem solving strategies (i.e., copy a similar solution or
work backwards from the goal to determine the solution) rather than
strategies dependent on the particular problem

l tend to approach programming through control structures

l use a line-by-line, bottom up approach to problem solution [Anderson,
1985]

3

Results of the studies: Experts

l have many mental models and choose and mix them in an opportunistic way
[Visser and Hoc, 1990]

l have a deep knowledge of their subject which is hierarchical and many layered
with explicit maps between layers

l apply everything they know
l when given a task in a familiar area, work forward from the givens and develop

sub-goals in a hierarchical manner, but given an unfamiliar problem, fall back
on general problem solving techniques

l have a better way of recognizing problems that require a similar solution [Chi,
et al, 1981; Davies, 1990]

l tend to approach a program through its data structures or objects [Petre and
Winder, 1988]

l use algorithms rather than a specific syntax (they abstract from a particular
language to the general concept)

l are faster and more accurate [Wieden-beck, 1986; Allwood, 1986]
l have better syntactical and semantical knowledge and better tactical and

strategic skills [Bateson, Alexander & Murphy, 1987]

Regardless of expertise

l Given a new, unfamiliar language, the syntax is not the problem,
learning how to use and combine the statements to achieve the
desired effect is difficult.

l Learning the concepts and techniques of a new language requires
writing programs in that language. Studying the syntax and
semantics is not sufficient to understand and properly apply the
new language.

l Problem solution by analogy is common at all levels; choosing the
proper analogy may be difficult.

l At all levels, people progress to the next level by solving problems.
The old saying that practice makes perfect has solid psychological
basis.

The Continuum

l Dreyfus and Dreyfus [Dreyfus, 1985] described the continuum
from novice to expert with five stages

– Novice
l Learns objective facts and features and rules for determining actions based upon

these facts and features. (Everything they do is context free.)
– Advanced Beginner

l Starts to recognize and handle situations not covered by given facts, features
and rules (context sensitive) without quite understanding what he/she is doing.

– Competence
l After considering the whole situation, consciously chooses an organized plan for

achieving the goal.
– Proficiency

l No longer has to consciously reason through all the steps to determine a plan.
– Expert

l "An expert generally knows what to do based upon mature and practiced
understanding."

4

Discussion

l Many tools for intro programmers are
marketed as a ‘scaled down’ version of
experts’ tools.

l Should tools for novices:
– Have less or more functionality than those for

experts?

– Have different functionality than those for experts.

Problem Solving and Pedagogy

l Problem Solving
– Understand the problem
– Determine how to solve the problem
– Translate the solution into a computer program
– Test and Debug

l Pedagogy
– Learn the syntax and semantics of one feature at a time
– Learn to combine this language feature with known design

skills to develop programs to solve the problem
– Develop general problem solving skills

