Novice and Expert Programmers

D

University of Victoria
Jeff Michaud

Gild Project

Overview of Presentation

e General Definitions
e Psychological Studies

- Novices

- Expert

- Common
e Novice-Expert Continuum
e Discussion

General Definitions

e Expert: someone who is more than just
proficient in an area

e Novice: someone who is just entering an
area




In the beginning

e ‘Psychological’ studies of programmers
started in the 1970s
e Results are unfortunately not reliable
- Weak methodologies
- Complex programming practices
- No psychologists ...

Enter the Psychologists

e Proper research methodologies used
e Studies start to show consistent results:

- novices could understand the syntax and
semantics of individual statements

- but could not combine the statements into
programs to solve the problem

Results of the Studies: Novices

lack an adequate mental model of the area [Kessler and Anderson,
1989]

e are limited to a surface knowledge of subject, have fragile knowledge
(something the student knows but fails to use when necessary) an
neglect strategies [Perkins and Martin, 1986]

e use general problem solving strategies (i.e., copy a similar solution or
work backwards from the goal to determine the solution) rather than
strategies dependent on the particular problem

e tend to approach programming through control structures

e use a line-by-line, bottom up approach to problem solution [Anderson,
1985]




Results of the studies: Experts

have many mental models and choose and mix them in an opportunistic way

[Visser and Hoc, 1990]

e have a deep knowledge of their subject which is hierarchical and many layered
with explicit maps between layers

e apply everything they know

e when given a task in a familiar area, work forward from the givens and develop
sub-goals in a hierarchical manner, but given an unfamiliar problem, fall back
on general problem solving technlques

e have a better way of recognizing problems that require a similar solution [Chi,
et al, 1981; Davies, 1990]

e tendto a{)groach a program through its data structures or objects [Petre and
Winder,

e use algorithms rather than a specific syntax (they abstract from a particular
language to the general concept)

e are faster and more accurate [Wleden -beck, 1986; Allwood, 1986]

e have better syntactical and semantical knowledge and better tactical and
strategic skills [Bateson, Alexander & Murphy, 1987]

Regardless of expertise

e Given a new, unfamiliar language, the syntax is not the problem,
learning how to use and combine the statements to achieve the
desired effect is difficult.

e Learning the concepts and techniques of a new language requires
writing programs in that language. Studying the syntax an
semantics is not sufficient to understand and properly apply the
new language.

e Problem solution by analo fgy is common at all levels; choosing the
proper analogy may be difficult.

e Atall levels, people progress to the next level by solving problems.
‘llj'he.old saying that practice makes perfect has solid psychological
asis.

The Continuum

Dreyfus and Dreyfus [Dreyfus, 1985] described the continuum
from novice to expert with five stages

- Novice
 Leams objective facts and features and rules for determining actions based upon
these facts and features. (Everything they do is context free.)
Advanced Beginner
 Starts to recognize and handle situations not covered by given facts, features
and rules (context sensitive) without quite understanding what he/she is doing.
Competence
o After considering the whole situation, consciously chooses an organized plan for
achieving the goal.
Proficiency
« No longer has to consciously reason through all the steps to determine a plan.
- Expert
o "An expert generally knows what to do based upon mature and practiced
understanding.”




Discussion

e Many tools for intro programmers are
marketed as a ‘scaled down’ version of
experts’ tools.

e Should tools for novices:

- Have less or more functionality than those for
experts?

- Have different functionality than those for experts.

Problem Solving and Pedagogy

e Problem Solving
- Understand the problem
- Determine how to solve the problem
- Translate the solution into a computer program
- Test and Debug

e Pedagogy
- Learn the syntax and semantics of one feature at a time

- Learn to combine this language feature with known design
skills to develop programs to solve the problem

- Develop general problem solving skills




