
Adopting GILD:
An Integrated Learning and Development Environment for Programming

Margaret-Anne Storey1, Mary Sanseverino, Daniel German, Daniela Damian,

 Adrian Damian, Jeff Michaud, Adam Murray, Rob Lintern, James Chisan
Department of Computer Science

University of Victoria

1 Contact e-mail: mstorey@uvic.ca; Website for this project: http://gild.cs.uvic.ca

Marin Litoiu
Center for Advanced Studies,

Toronto, IBM

Derek Rayside
Program Analysis Group

 Laboratory of Computer Science, MIT

Abstract

This position paper presents GILD – an integrated

learning and development environment for programming.
The objective of the GILD project is to provide facilities
for teaching and learning Java that are tightly integrated
with a fully featured, mature and widely adopted
development environment. GILD is being designed as a
plug-in for Eclipse and takes full advantage of the Eclipse
Java development tools. It will also include collaborative
support as well as more sophisticated methods for
teaching and learning the first principles of a
programming language. In this paper we identify the
technical and pedagogical aspects that we think will
contribute to its adoption by both teachers and students,
while discussing the challenges and barriers that we may
face.

1. Introduction

Teaching students how to program can be a challenging
task. Unfortunately, there are few tools that provide
pedagogical support for learning and teaching
programming. Fully featured integrated development
environments (IDEs) overwhelm novice programmers
and do not have all of the features needed to support
teaching. The programming pedagogical tools that do
exist (such as BlueJ [15] and DrJava [14]) have not seen
widespread acceptance. We suspect this is because they
tend to offer a minimal or reduced feature set and thus are
limited in how long they remain useful to the student
programmers. They also lack features that are commonly
available in collaborative desktop environments, such as
simultaneous document browsing/editing, instant
messaging, Web forums etc. Such features are often used
in other disciplines to enhance learning.

Currently teachers usually make use of several tools
when creating materials for a programming course. They
may use an IDE to prepare program samples, a
presentation tool to present materials in class, a drawing
tool to create pictures, a Web-publishing tool to post
course materials, and e-mail to communicate with their
students. This leads to a scattering of course materials
and related information that is difficult to update and
share. Moreover, the current approach of using e-mail for
providing programming help outside class time is very
tedious and quickly breaks down – for example, students
often ask questions about code that the instructor can’t
see. There exist some tools, such as Blackboard
(www.blackboard.com) and WebCT (www.webct.com),
that provide a Web portal to the material of a course, but
unfortunately these tools are not tailored to teaching and
learning programming.

In our experiences, we have found that students will
learn programming concepts more quickly if they read,
write and test lots of example programs. Unfortunately,
instructors rarely have enough resources to provide
feedback on numerous programming exercises.
Automatic marking techniques are commonly deployed
but they are typically custom solutions that are difficult to
reuse or extend. Good teaching practices also
recommend providing in-class interactive exercises – but
with traditional pen and paper media it is impossible to
give feedback to every student solution in large classes.

We believe there is a need for an integrated learning
and development environment that will expand in
usefulness as the programmer’s ability and need for
training increases. We have begun to develop such an
environment to help novice through intermediate
programmers learn Java. The GILD (Groupware-enabled
Integrated Learning and Development) environment is
being built on top of an existing and well-accepted IDE
(integrated development environment) within Eclipse [3].

Eclipse is an open-source platform for the creation of
highly integrated tools [16].

Our environment will make use of the powerful
infrastructure and large number of plug-ins that are
provided by Eclipse and the Eclipse community. We are
also using other tools and borrowing concepts from Web-
based learning tools and collaborative desktop
technologies to enhance learning in both co-located and
distributed settings. By building on top of a widely
adopted and powerful integrated learning environment,
while paying careful attention to pedagogical
requirements, we believe the GILD environment could be
widely adopted for teaching and learning programming.

The rest of the paper is organized as followed. In the
next section we detail the adoption goals of our project, in
particular emphasizing both technical aspects of the
GILD environment as well as the pedagogical
requirements that need to be met to ensure adoption. In
Section 3, we discuss how we expect both students and
instructors will adopt this tool and the expected benefits
such a tool can provide. In Section 4 we discuss the
adoption challenges that we face with both instructors and
students, and from the educational institution’s
perspective. Finally Section 5 concludes this brief paper
and summarizes our current and future work.

2. Research Goals

There are many issues concerning the adoption of a
learning environment for programming. There are two
sets of users for this environment – teachers and students.
We conjecture that for both groups to adopt the
environment, it needs to be inexpensive, easy to install,
easy to use, and fit in with their existing tools and legacy
course information. But more importantly, the tool needs
to provide some gains with respect to the pedagogical
needs of both groups. In this section, we first discuss
some of the technical aspects of GILD and then explore
the pedagogical objectives for both teachers and students
and how they can be supported by the technical solutions
we suggested.

2.1 Technical aspects

2.1.1 Implement GILD as a plug-in for Eclipse

The Eclipse environment and its Java development tools
are already seeing widespread adoption. This rapid
adoption was anticipated due to Eclipse’s open source
nature and its extensible architecture. Consequently we
decided to build the GILD environment on top of the
Eclipse Java Development Tools and Eclipse
infrastructure. Moreover we will leverage third party
plug-ins that can bring additional benefits to the users of

the GILD environment. For example, there are plug-ins
to support the automatic generation of UML diagrams
(for example, the SlimeUML tool [1]). Generation of
UML diagrams can help instructors explain code
examples, or can be used by students during code
explorations or to show their designs in course
assignments. Other plug-ins of interest facilitate pair
programming [2] and provide information on code quality
[21].

The environment we build will also be available as an
open source framework that is extensible (that is, we will
create GILD specific extensible points).

2.1.2 Integrate features from existing tools

From our own experiences as teachers and those of our
colleagues, we are acutely aware that instructors struggle
with integrating and synchronizing information from
many different tools. Tool switching and synchronization
problems are common to instructors of most fields, and
hence the recent rise in popularity of Web-based learning
tools [18]. Web-based learning tools provide an
integrated environment for preparing and managing
course materials. Although such an environment may
seem to offer trivial improvements over using a selection
of tools, the biggest advantage they offer is that of
organizing course materials for both the instructors and
students. Note that a key criterion for an effective teacher
is to be organized [20].

Moreover, students should be able to use one learning
environment for both software development and course
material access.

Unfortunately, Web-based learning tools do not help
as much as one would initially hope when teaching or
taking a programming course. They are not tightly
integrated with the development environments that are the
cornerstone tool for both instructors and students in a
programming course. To address this problem, we
propose that key features from a Web-based course
management environment should be tightly integrated
with a software development environment (as opposed to
the alternative approach of creating some programming
support and adding that to a Web-based learning tool).

We propose that the User Assistance plug-in for
Eclipse be used for authoring, integrating, storing,
organizing and presenting Web-based materials. Such
materials should be tightly coupled with the programming
examples in the Java development tool repository. We are
also exploring how collaborative support (currently being
added to Eclipse for other projects) can be leveraged in
the GILD environment.

The integrated approach we advocate would reduce the
need for both students and teachers to be constantly
switching between tools when interacting with a course.

2.1.3 Provide a customizable environment for learning
and teaching

One size definitely does not fit all when it comes to
teaching and learning programming. All instructors and
students will have very different needs when using such
an environment. Instructors have very different styles of
teaching, and may choose to use only a subset of the
features offered. The features they use in their course will
also depend on the level of the course being taught.

We have noticed that even students in a first year
programming course tend to be at very different skill
levels and consequently the more advanced students will
choose not to use the simple tools that are often
advocated at universities, as they are too limited. For
example, at the University of Victoria, the TextPad tool
[17] is recommended in first year, as it is very simple and
easy to learn for novice programmers. However, such a
tool is clearly very limited and will be rejected by the
more savvy students.

The instructor and the students have to be able to
configure the environment so that it is suitable for the
varied levels of the students. Eclipse offers many
advanced features, such as “code assist” and refactoring,
which may be overwhelming for novice programmers but
desirable for the more advanced student. Customization
of the features in the Eclipse JDT can be achieved in part
through the use of its UI features (natures, perspectives
and views), thus meeting the diverse needs of instructors
and students while supporting changing needs over time
for both groups.

2.2 Pedagogical objectives

2.2.1 Novice programmers should read, write and test
lots of code

It is generally accepted that novice programmers
should have lots of experience reading, writing and
testing programs in order to learn. Unfortunately current
teaching tools tend to place the students (and indeed the
instructors) outside the domain of the development
environment and instead trap them in a Web browser or
in a presentation tool.

 The GILD environment should instead position
students and teachers within the development
environment providing easy access to relevant executable
program examples and other course materials.

We are using the existing version control systems in
Eclipse (such as CVS) for storing examples and exercises
selected by the instructor. Students will be able to check
code and assignments in and out using these facilities.
We will also integrate facilities to allow automatic
deployment, submission and marking of assignments.

Such facilities will enable students to do more
programming (which is the best way to learn how to
program).

 Over time, a library of code examples, course notes
and tutorials can be created by leveraging and extending
the features of the version control repositories and the
help system in Eclipse.

2.2.2 Present syntactically and semantically correct

code to students

Many novice programmers struggle when learning the
basics of a new programming language. Their knowledge
is very fragile, and seemingly innocent mistakes in an
instructor’s snippet of code, can cause students much
grief. These mistakes are common when the program
examples and code snippets are taken outside the
development environment. By keeping such examples
grounded within a development environment, the
instructors can more easily correct syntactic mistakes as
they occur in real time. Eclipse provides ‘eager parsing’
and ‘code assist’ features that can also be used to help the
students learn from their own mistakes and may promote
more exploration on the part of the students. We are also
exploring these facilities to see if they lend themselves to
customization. This would allow instructors to tailor
messages to emphasize topics of relevance.

2.2.3 Assign Interactive Exercises in the classroom

Many universities have wired classrooms or
laboratories where each student sits at an individual
computer in a networked environment. In such an
environment, a tool should provide support for the
instructors and students to write, annotate and run code in
real time–passing control from one to another as required.
In addition, students should be able to submit answers
that can be marked automatically and direct questions to
the class for discussion as they arise.

We are also exploring how these objectives can be met
through existing Eclipse plug-ins that support pair
programming such as SanGam [2] and the collaborative
support that is being added to Eclipse.

2.2.4 Provide support for Communication and

Just-in-time Training

Web-based learning tools are in part also popular
because of the collaborative support they provide.
Communication mechanisms such as forums, instant
messaging and e-mail are used frequently. Such facilities
take student interaction beyond the classroom and
enhance the learning experiences of the students. Students
can learn from and help one another when such facilities

are available. Without these, many students express
isolation in a university environment and have only the
instructor to approach when they have problems with
course material. Moreover, interactions with instructors
can be limited to either office hours or to e-mails, which
tend not to be very expressive.

We advocate that the students should be able to
interact with the instructors and other students both in
real-time and asynchronously by asking questions and
receiving replies that are positioned within the context of
their code. When the students and instructor are not co-
located but are working synchronously, collaborative
support features such as simultaneous code editing and
instant messaging will move the interactions between the
student and instructor out of the e-mail world and back
into the development world where these interactions
should take place (see www.groove.net for an example of
such a general-purpose collaborative environment).

As the instructor receives questions about tricky parts
of the assignment, he or she can insert links to related
code examples and other hints that will provide “just-in-
time” training for the more complex exercises.
Furthermore, pair-programming techniques have been
used successfully in many introductory programming
courses [19]. Simultaneous code editing combined with
instant messaging will enable students and the instructor
to collaboratively author code and improve their learning
experiences.

Eclipse already has some infrastructure that we believe
will be useful for helping us provide this support–such as
extensible markers and decorators.

3. GILD’s Adoption

There are many reasons that lead us to believe that
GILD will be adopted. We list these reasons from four
perspectives -- that of instructors, students, post-
secondary institutions, and the Eclipse community --
while recognizing that these claims have yet to be
validated.

3.1 Instructor Perspective:

Repository of course content. Using GILD we hope
to achieve a closer integration of course materials (notes,
pictures, animations, etc) with executable program
examples. Typically, course content that one finds on the
Web, or borrows from colleagues, is incomplete or lacks
documentation. In particular, standalone programs are not
often explicitly tied to course material or learning
objectives and it takes a professor contemplating reuse of
the material much time to figure out if the material
matches their needs. By integrating such programs more
closely with course material (linked by learning

objectives) we hope to lead to more reusable content and
programs. The reuse of lecture materials is very attractive
to individual instructors and department administrations.

Fewer tools required when teaching. Such an
environment could alleviate the need for switching and
synchronization of materials between tools and hence
lead to more adoption.

3.2 Student Perspective:

Popularity of Eclipse. Eclipse is already widely used
in industry. Students will likely see the value of learning
it, as they can apply their knowledge later when their
education is finished.

Free. Students have very limited resources so cost will
have a big impact on whether they adopt a tool or not.
Gild will be free when used for academic purposes.

Collaborative support. Many students feel isolated
from other students and indeed from the professor in a
course. We conjecture that collaborative support would
lead to more adoption of this approach.

Interactive learning support. Learning how to
program is a very dynamic activity. As instructors of
these courses, we have noted that the students that write
lots of code and actively engage with the material do
much better than students who take a more passive
approach. Unfortunately, our current tools support the
passive approach rather than a dynamic environment for
code exploration and experiences. We believe students
will embrace the opportunities to do more programming if
they are presented to them in an easy to access manner.

3.3 Post-Secondary Institution Perspective:

Platform independence. GILD will run on any

platform in which Eclipse runs. This includes Microsoft®
Windows®, Mac OS, and various flavours of UNIX®.
Moreover, GILD will co-exist with other applications on
these machines, as students, faculty and staff use them for
many purposes.

Free. GILD, and all subsequent updates, will be free
to post-secondary institutions. These institutions are
under constant budget constraints, so even a small fee
could be a break point. As well, licensing issues can be
easily dealt with. Students will also be able to use GILD
free of charge on their own machines.

Easy to deploy and maintain. Typically, post-
secondary institutions have limited system personnel and
teaching assistance resources. At University of Victoria,
we currently use TextPad because it is easy to deploy and
maintain. It is also easy to train teaching assistants and
computer consultants on. However, TextPad is limited in
that it is neither a learning nor a teaching environment.

Our goal is to make GILD a tool that is easy to deploy
and maintain, easy to learn and use, and actively supports
various learning and teaching strategies.

3.4 Eclipse Community Perspective:

Community oriented. We will build on top of other
research and expect other research groups may wish to
build on top of our work. We also expect several
communities to flourish around GILD’s repository.
Instructors and students will be able to share their content
and their experiences using GILD.

Open source. By making GILD open source we
expect two main outcomes. First, it will be free for
anybody to use. Second, other projects can reuse GILD or
part of it in order to provide functionality or products
beyond the original goals of the project.

Extensible. Our objective is to create an architecture
that permits the customization of GILD to specific
environments, for example, teaching C/C++.

4. Adoption Challenges

As in many areas of technologically influenced change,
the adoption challenges for GILD are classic. They
include the following: infrastructural capability, staffing
and training issues, and, perhaps most importantly,
attitudinal differences in the potential adopter community.

Infrastructural capability: in the post-secondary
education community, a committee often determines
changes in technological infrastructure for teaching. Good
teaching/learning rationales have to be provided to these
committees before any technology that “pushes the
infrastructure envelope” is adopted. Typically, those
responsible for day-to-day teaching infrastructure are the
first to recognize the benefits of such upgrades, and are
often looking for “good causes” to support their requests.
Of course, any infrastructural change must be manageable
for the target institutions. Moreover, most post-secondary
institutions have commitments, both formal and informal,
to supporting widely varying technologies within the
same infrastructure. Technologies that need to “take over”
existing infrastructure are often not successful in this
milieu. GILD should balance as small an infrastructural
change footprint as possible while providing exceptional
teaching and learning possibilities.

Staffing/training issues: The typical post-secondary
computer help desk is a hive of activity – especially when
assignments are due. Staff are usually run off their feet.
Therefore, to be readily adopted, new technology must be
robust enough to run without much intervention by
skilled staff. However, in GILD’s case, we do want users
to ask questions, but about content, not operation.
Therefore, front-line staff have to be trained to use GILD

and be kept up-to-date on the types of questions to expect
from users. Moreover, GILD will need to be easy to
install and run on users’ home machines. We could
anticipate that some demands may be reduced on teaching
assistance staff, as it will be easier for students to help
one another 24/7. As instructors, we have noted a big
decrease in student questions when we provide facilities
to support their interactions outside the classroom.

Attitudinal differences: In most post-secondary
institutions, the resources used to teach a given course are
very much influenced by the preferences of the individual
instructor. Any new learning and teaching technology
would have to easily interface with the majority of the
resources already used by the instructor. Failure to do so
would be a major barrier to adoption. Certainly many
instructors want to improve their teaching methods, but
almost every instructor has already spent a great deal of
time preparing and testing material. The GILD system
must be able to integrate this legacy material and provide
instructors with new ways of using and building on it.

Other challenges: We have yet to discover what other
challenges and barriers to adoption there remain with
respect to the Gild tool. We look forward to feedback at
the Adoption Centric Software Engineering workshop on
people’s opinions and insights about our proposed work.
For a tool to be adopted, it must fill a need and provide
advantages that outweigh the disadvantages from
adopting such a tool. Do the needs we identified resonate
with others in software engineering? Does it seem likely
that we can overcome the challenges and reduce the
potential adoption barriers we identified? And are there
other significant challenges that we may face that we
have not yet considered?

5. Conclusions

GILD is an integrated learning and development
environment for programming. Our goals for this
environment are to improve the experiences of students’
learning and professors’ teaching Java programming.
Besides the more general adoption challenges, GILD
faces challenges of providing gains with respect to the
pedagogical needs of both students and teachers. In this
paper we described a project in which we intend to
overcome these adoption challenges by making use of the
powerful infrastructure and large number of plug-ins
available in Eclipse, as well as by thoroughly researching
the pedagogical needs that such an environment provides.

Our project is in its early stages, where our challenges
include the rigorous definition of the technological as
well as pedagogical needs of the intended GILD users.
We are embarking on a big effort to collect requirements
about how an integrated learning and development
environment can be used for teaching programming. We
will consider scenarios of how such a tool could be used

and document these. We are currently striving to provide
technical solutions to the identified needs, as well as
creating a research environment in which the adoption
barriers are well-understood and addressed through
proven research methods. The user requirements will be
defined through iterative prototyping with intended
categories of students and teachers, while the
environment will be user tested following its
development. We also intend to address adoption by
organizing workshops and training with GILD and
observe its use in classrooms for continued improvement
and removal of adoption barriers.

Developed through well-identified research methods,
we expect the GILD project to provide a powerful tool to
convey our research practices to other disciplines and to
advance research in our community. It will foster
continued collaborations within the Eclipse community as
well as among researchers in the area of adoption-centric
software engineering.

References

[1] Slime UML plugin,
http://www.mvmsoft.de/content/plugins/slime/slime.htm
[2] Pair Programming Plug-in,
http://sourceforge.net/projects/sangam
[3]Eclipse Overview,
http://www.eclipse.org/whitepapers/eclipse-overview.pdf
[4] Eclipse Website: www.eclipse.org
[5] Eclipse perspectives,
http://dev.eclipse.org:8080/help/content/help:/org.eclipse.
platform.doc.user/concepts/concepts-4.htm
[6] Eclipse Views,
http://dev.eclipse.org:8080/help/content/help:/org.eclipse.
platform.doc.user/concepts/concepts-5.htm
[7] Natures,
http://dev.eclipse.org:8080/help/content/help:/org.eclipse.
platform.doc.isv/guide/resAdv_natures.htm
[8] Refactoring,
http://dev.eclipse.org:8080/help/content/help:/org.eclipse.
jdt.doc.user/reference/ref-115.htm
[9] CVS,
http://dev.eclipse.org:8080/help/content/help:/org.eclipse.
platform.doc.user/reference/ref-47.htm
[10] Code assist,
http://dev.eclipse.org:8080/help/content/help:/org.eclipse.
jdt.doc.user/reference/ref-143.htm
[11] Eclipse Markers,
http://dev.eclipse.org:8080/help/content/help:/org.eclipse.
platform.doc.isv/guide/resAdv_markers.htm

[12] Team Decorators,
http://dev.eclipse.org:8080/help/content/help:/org.eclipse.
platform.doc.isv/guide/team_ui_decorators.htm
[13] Help System,
http://dev.eclipse.org:8080/help/content/help:/org.eclipse.
platform.doc.user/tasks/tasks-1g.htm
[14] DrJava: A lightweight pedagogic environment for
Java, Eric Allen, Robert Cartwright, and Brian Stoler
September 7, 2001, presented at SIGCSE 2002
[15] David J. Barnes & Michael Kölling, Objects First
with Java A Practical Introduction using BlueJ
Prentice Hall / Pearson Education, 2003,
ISBN 0-13-044929-6
[16] Eclipse FAQ,
http://www.eclipse.org/eclipse/faq/eclipse-faq.html
[17] TextPad, http://www.textpad.com/
[18] Evaluating the usability of Web-based learning tools,
M.-A. Storey, B. Phillips, M. Maczewski and M. Wang,
Special issue on Evaluation of Learning Technologies in
Higher Education, Guest Editor: Grainne Conole,
Educational Technology & Society 5 (3) 2002,
ISSN 1436-4522
[19] In support of student pair-programming , Laurie
Williams, Richard L. Upchurch , Technical Symposium
on Computer Science Education, Proceedings of the thirty
second SIGCSE technical symposium on Computer
Science Education 2001, Charlotte, North Carolina,
United States
[20] Effective Teaching Behaviors in the College
Classroom. Harry G. Murray in Effective Teaching in
Higher Education: Research and Practice. Editors:
Raymond Perry, John Smart. Agathon Press, New York.
1997, pgs. 171-204
[21] Eclipse Metrics Plug-in,
http://www.teaminabox.co.uk/downloads/metrics/

Trademarks

IBM is a registered trademark of International Business
Machines Corporation in the United States, other
countries, or both.
Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries,
or both.
Microsoft and Windows are registered trademarks of
Microsoft Corporation in the United States, other
countries, or both.
UNIX is a registered trademark of The Open Group in the
United States and other countries.
Other company, product, or service names may be
trademarks or service marks of others.

