
Code Warriors and Code-a-Phobes:
A Study in Attitude and Pair Programming

Lynda Thomas, Mark Ratcliffe and Ann Robertson
Computer Science Department

University of Wales, Aberystwyth

Great Britain SY23 3DB
{ltt,mbr,iar}@aber.ac.uk

Abstract
This paper reports on how first-year students who have
programmed before see their programming interest and ability
and how this self-perception relates to their performance in the
introductory programming course. In particular we examine how
this self-perception is reflected in their reactions to the pair-
programming technique for developing software.

Students who had programming experience before University
were given a survey that placed them on a scale that we have
called Code Warrior to Code-a-phobe. We then placed them in
‘opposite’ and ‘similar’ pairs for a pair programming exercise
and surveyed their reactions. There was evidence that students
who have considerable self-confidence do not enjoy the
experience of pair programming as much as other students and
that students produce their best work when placed in pairs with
students of similar self-confidence levels.

Categories and Subject Descriptors

K.3 [Computers & Education]: Computer &
Information Science Education –Computer Science
Education.
D.2 [Software Engineering]: Coding Tools and
Techniques– Object-oriented Programming

General Terms
Human Factors

Keywords
Pair programming, Self-confidence, First Year Programming,
CS1, Closed Labs.

1 Introduction
In our search at Aberystwyth for ways to make our courses more
interesting and appealing to the wider range of students who
now enter higher education, we are in the process of
developingan educational environment that allows students to
maintain control of their own learning by providing a suite of

resources that bundles traditional pedagogical approaches such
as lectures, tutorials and seminars, with various other
innovations [5]. Our consideration of how to improve the first
year sequence and other courses has also led us to consider the
issue of individual learning styles [6] and their impact on
teaching and student success. This in turn has led to an interest
in how students’ individual characteristics impact on the
somewhat standardised way that we expect them to work.

In this paper we examine correlations between a specific
characteristic - attitude to programming - and performance on an
introductory programming course. In particular, we examine
whether attitude to programming impacts on the use of pair-
programming in closed labs.

2 Pair Programming
Pair programming is “a programming technique where two
people program with one keyboard, one mouse and one
monitor” [1]. It has gained a good deal of interest recently,
probably because of its inclusion in the set of techniques that
comprise Extreme Programming. Initially the evidence for the
effectiveness of pair programming was largely anecdotal, but
recently surveys in industrial [9] and educational [4,10] settings
seem to indicate that most respondents find it enjoyable and that
it improves the level of code quality.

Williams and Kessler’s reports on reaction to pair programming
in their courses are certainly encouraging:
• 95% of the students agree with the statement “I was more

confident in our assignments because we pair
programmed.” This was borne out in their programs, which
passed 15% more of the test cases

• 84% of the students report enjoying the experience of
programming more when working in a pair [10].

As educators, we wanted to see if these results could be
duplicated with our own programming students. The results
certainly fit in with the collaborative view of programming
practice that we have held dear since readingThe Psychology of
Programming [8] many years ago, and we could certainly
believe that this practice might work well with mature
programmers in industry, but we had niggling doubts as to how
well it would work with 18 year olds straight from high school.1

1 The origin of these doubts was Dr. Williams’ description of the
average student at the University of Utah. Many of these students have
postponed University while they completed a missionary year. In
addition, many are married. This is quite different from the profile of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’03, February 19-23, 2003, Reno, Nevada, USA.
Copyright 2003 ACM 1-58113-648-X/03/0002…$5.00.

3 Code Warriors
The use of the term ‘code-warrior’ in this work comes from a
paper by Debora Weber-Wulff that was presented at ITiCSE
2000 [7]. She describes certain students as seeing themselves
“…as a sort of code warrior, fighting with the enemy compiler,
forcing it to assent to their glorious code and to produce a
program that obeys their every desire.” In this paper Weber-
Wulff concentrates on how these students (who often are not
actually as advanced as they think) can be led into understanding
that production-quality large software systems require
documentation, deep understanding, and team programming.
The term certainly describes many of our students at
Aberystwyth, particularly those in their first and second year.

The term ‘code-a-phobe’ we have coined ourselves after
observing what seems to be an unfortunately common
phenomenon among our students. Many students decide to
major in computer science but seem to obtain little satisfaction
from programming. The first author first noticed this about 10
years ago whilst teaching in the States; but this phenomenon
now seems to be equally common among British students. An
unkind observer might wonder what these students were doing
in computer science programs at all, but we are forced to admit
that many jobs in the IT industry do not require highly
developed programming skills. These students often aspire to
these sorts of jobs – or they simply enjoy manipulating software
and hardware and a computer science degree seems like a good
idea to them. They frequently report ‘hating to program’ or
‘being hopeless at programming’. Whether we like it or not, as
educators we are faced with these kinds of students and the
combination of them in classes with ‘code-warriors’ makes
programming courses very difficult to teach [2].

The phenomenon of the two sorts of students mentioned above
is not just an attitudinal one. A recent multi-national study on
the assessment of programming skills of first year CS students
that was coordinated at ITiCSE 2001 investigated the
programming competency of students from four universities in
three different countries [3]. Results were sobering. The average
score on an assigned programming problem was 22.89 out of a
possible 110 points. When the data was analysed in more detail
it appeared that performance was bi-modal. Many students never
got going with the problems at all, others did very well.

4 A Caveat
We realise that there are actually two variables here: attitude and
performance. We have no way of knowing if the ‘code-warriors’
described by Weber-Wulff are the sorts of students who actually
performedwell in the programming skills study (see also section
6.2). The students whom we have labelled ‘code-a-phobes’
might actually be perfectly competent programmers. We look at
this in section 6 but gain no statistically conclusive evidence.
We need to perform more research to determine the relationship
between attitude and performance. We consider that the
experiment described below is a step in this direction and are
currently continuing to pursue this research.

5 The Experiment
In this study we attempted to examine the practice of pair
programming in the context of the distribution discussed above.
At the beginning of the semester we asked first-year students
who had prior programming experience to complete a

most of our students, who are considerably less mature and not used to
cooperative endeavour.

‘programming attitude’ questionnaire. This questionnaire was
adapted from one originated by Davis and others at the
University of Southampton, where it was successfully used to
place students in appropriate groups for first year instruction [2].
On this instrument students place themselves on a scale from 1
to 9, where we described:

9 as:
• Code-Warrior I have had no trouble at all

completing programming tasks to date, in fact they
weren't challenging enough. I love to program and
anticipate no difficulty with this course.

and 1 as:
• Code-a-Phobe I don't like programming and I

don't think I am any good at it. I can write simple
programs but have trouble writing new programs for
solving new problems.

Later in the semester, the students were given a lecture on pair
programming and a short paper to read to prepare themselves for
this exercise. They were then placed in pairs to solve a simple
problem during a regularly scheduled practical laboratory. The
pairs were not assigned randomly (see below). The students
were then surveyed for a reaction to this experience and the
programs they produced were read and marked for style by the
authors, and also run against suitable test cases to determine
quality.

Results were collected twice. In the first experiment pairs were
constructed (wherever possible) of students whom we identified
as ‘opposites’ in terms of the attitude questionnaire. In the
second analysis we placed students in pairs with others whom
we had identified as ‘the same’. Students who came out in the
‘middle’ group on the questionnaire were always assigned each
other as partners.

Our suspicion when we set up the experiment was that students
in the code-a-phobe and middle groups would enjoy this
experience and perform better than might have been expected on
the programming problem, but that students in the ‘code-
warrior’ group would not enjoy working either with other
warriors or with other kinds of students.

6 The Results
Although the class with which we performed this experiment
was quite large (more than 60 students), once the students were
divided into pairs and further divided by attitude, groups were
too small to gain much of statistical significance. This study can
only be a first step in a larger study – but given that proviso
there are several interesting things to be gleaned from the data
collected.

6.1 Distribution of Code-Warriors and Code-a-phobes

We determined the three groups by the self-placement of the
students as expressed on the ‘Programming Attitude
Questionnaire’. Students who rated themselves as 7-9 were in
one group (we will refer to them as ‘warriors’ in this paper – but
did not use this emotive terminology when setting up the student
pairs). Students who placed themselves as 1-3 were in another
group (in this paper we will refer to them as ‘phobes’). The
remaining students were in the third or ‘middle’ group.

Fig 1: Student Distribution

warrior - 17

phobe - 13

middle - 34

Again the question of abilityversusconfidence arises. In the
determination of the staffall these students had reasonable
programming experience (in almost all cases, A-level computing
which is approximately equivalent to an introductory overview
course at most North American Universities). Even so, many of
them seem to have little confidence in their own ability2.

6.2 Self-rating as a prediction of success

We correlated how the students rated themselves with their final
marks in the module and the results are illustrated in Figures 2
through 4.

The average mark for the class as a whole and for the middle
group was 59.7%. The warrior group averaged 62.8% and the
phobe group 55.7%. We performed a t-test on these values and
the most significant was the result for the phobe group (p=.143).
This is indicative but not statistically significant. The marks for
the warrior group were not statistically significantly higher than
for the class as a whole and do not come close to a normal
distribution as can be seen in Figure 2 (so the t-test is not
suitable in any event).

The students who rated themselves as ‘warriors’ but did not
perform well in the module form an interesting group that needs
consideration.

2 We think it is fair to say that the stereotype of a code-warrior is male.
There were only 7 women in the class, so it is impossible to make
generalisations, but one female student rated herself in the phobe group,
the others all placed themselves in the middle group.

6.3 Results after the first (‘opposite’) experience

After the first experience we asked students questions (based on
Laurie Williams’ questionnaire) about their enjoyment and
performance on the task. In this experiment warriors were
placed with phobes when possible and with middles when not3.

1. Did you enjoy the pair programming experience
more than working alone?

Yes / No / Undecided
Why / Why Not?

2. Do you think you did a better job with this
problem because you solved it in a pair?

Yes / No / Undecided
Why / Why Not?

3. Was there anything about the experience you
particularly liked?

4. Did you experience any particular frustrations
with pair programming?

6.3.1 Satisfaction

Overall, students enjoyed the experience (66%) and thought that
it helped them produce a better solution (66%). Data can be seen
in Table 1. Students mentioned that they enjoyed the aspects of

enjoyment achievement

yes no unsure better worse unsure

warrior 9 1 7 8 6 3

phobe 8 2 3 8 2 3

middle 25 1 8 26 2 6

total 42 4 18 42 10 12

Table 1: Results from the First Experience

3 A few students arrived late and so 2 of the phobes were actually placed
with middles.

Fig 2: Middle Group Performance

0

2

4

6

8

10

12

<50 50-60 60-70 70+ 80+

Fig 3: Phobe Performance

0

1

2

3

4

5

6

7

<50 50-60 60-70 70-80 80+

Fig 4: Warrior Performance

0

1

2

3

4

5

6

<50 50-60 60-70 70+ 80+

mutual help, communication and learning new things. The main
complaints were about insufficient time for the exercise and the
artificiality of the ‘switching time’ but students also mentioned
frustration, guilt and wasted time.

We particularly wished to examine students who were placed
with ‘opposite’ partners in this pairing. The phobic students
responded essentially the same as the group as a whole, but
when we concentrate on the first row of Table 1 the results tell a
different story. Only 53% of the warriors reported enjoyment of
the experience and only 47% of them thought that pair
programming led to a better solution. This latter result was
actually statistically different from that of the rest of the group
when compared using the t-test (p=.044).

6.3.2 Performance

When we examine the marks allocated to the various groupings
results are also interesting as can be seen in Table 2.

totally opposite pairs- 11 2.23

somewhat opposite pairs - 8 3.19

similar pairs - 13 2.69

Table 2: Grades from First Experience

The highest grades awarded (A was 4.0, B was 3.0 etc.) were in
the groups of warriors and middles (and the 2 groups of middles
and phobes who achieved an A and a B). The lowest grades
awarded were in the warrior/phobe combinations. It could be
argued that this was because the less confident students brought
down the pair’s marks (but see the next section) or that less
confident students had less input to the pair’s solution – making
the solution essentially that of one person. In any case this result
bears further investigation.

6.4 Results after the second (‘similar’)
experience
We then repeated the experiment where all the pairs were made
up of students from the same group. An extra question was
inserted in the questionnaire.

Did you enjoy this experience more or less than your
last pair programming experience?

More / Less / Same
Why?

There were 9 groups of warriors, 5 groups of phobes and 14
groups of middles. Unfortunately, 6 of the warriors did not
complete the questionnaire (thus conforming to stereotype?)

Results are summarised in Table 3. Overall they were somewhat
similar to the first experiment.

Again the warriors were less enthusiastic than the other students,
but this time by a smaller percentage; 58% of them enjoyed the
experience (as opposed to 64% overall), but 67% thought it led
to a better product (as opposed to 65% overall).

Overall 44% of the studentsreported liking the second
experience more than the first (and 38% just as much). One
explanation could be that they preferred the ‘similar’ grouping,
another that they were just more used to working in a pair. The
group that self-reported liking the experience more was the
phobes: 60% of whom said they enjoyed this experience more,
and none less, than last time. Of the warriors approximately
equal numbers reported liking it ‘more’ and ‘less’ than the
previous time. The change in pairings appears to have had little
effect on the warrior group’s self-reporting in answering this
question (although more of them ‘enjoyed’ the experience as
mentioned in the previous paragraph).

This problem was easier than the one used in the first
experiment, as can be seen in Table 4, and results were
essentially the same in all groups. There is no evidence of

warrior pairs 3.56

phobe pairs 3.40

middle pairs 3.47

Table 4: Grades from Second Experience

the weaker students (even when there were two of them)
producing a weaker result.

7 Conclusions
We draw several conclusions from this experiment, all of which
require further examination. First of all with respect to the self-
placement on the warrior-phobe scale:

1. Students with very similar background and previous
attainment place themselves at very different places on
the warrior-phobe scale. (In future work we need to
use a scale that carefully separates attitude from
expected achievement.)

2. This placement is not necessarily ‘correct’ in terms of
their attainment in a first year programming course. In
particular the 5 students who saw themselves as
warriors, but achieved less than 50% are worth noting.

enjoyment achievement

enjoyed compared

to last time

yes no unsure better worse unsure more less same

warrior 7 0 5 8 4 0 3 4 5

phobe 8 0 2 8 0 2 6 0 4

middle 17 3 8 17 2 8 12 4 9

total 32 3 15 33 6 12 21 8 18

Table 3: Results from the Second Experience

Secondly, when we examine the results as they apply to pair-
programming:

3. Overall, students like pair programming and believe
that it helps them achieve good solutions.

4. Students with less self-confidence seem to enjoy pair-
programming the most4.

5. The students whom we have identified as ‘warriors’
like pair programming the least. This was as we
suspected given our student profile.

6. There is some evidence that warriors like pair
programming even less when they are paired with
phobes and that students produce their best work when
paired with students of similar, or not very different,
levels of confidence.

8 Future Work
This experiment was conducted during the 2001-2002academic
year. In the current year we have continued to inform our first
year students about pair programming and they have all used it
in at least one closed lab. Informal feedback indicates that it
continues to be popular sand useful for most (but not all)
students.

This year we have not, however, given the students the self-
confidence survey or controlled for pairings. While we feel that
we learnt a lot from this experiment we are worried that the
terminology used in the survey may itself be harmful,
particularly to less confident students.

In addition, as touched on previously in this paper, we wish to
more clearly differentiate between achievement and self-
confidence before we proceed further.

We intend to revisit this experiment when we are able to iron out
these difficulties, probably later in the year.

9 Acknowledgements
Many thanks to all the students and demonstrators of CS12320
in academic year2001-2002!

4 An interesting spin off from this experiment is that some students in
the second year of our program adopted pair-programming of their own
accord for dealing with less confident group project members.

References
[1] Beck, Kent,Extreme Programming Explained, Addison-

Wesley (2000).

[2] Davis, H.C., Les Carr, Eric Cooke and Su White,
Managing Diversity: Experiences Teaching
Programming Principles,Proceedings of the Second
Annual Conference of the LTSN Centre for Information
and Computer Sciences, LTSN-ICS (2001).

[3] McCracken, M., V. Almstrum, D. Diaz, M. Guzdial, D.
Hagen, Y. Kolikant, C. Laxer, L. Thomas, I. Utting, T.
Wilusz, A Multi-National, Multi-Institutional Study of
Assessment of Programming Skills of First-year CS
Students,SIGCSE Bulletin(December 2001).

[4] McDowell, Charlie, Linda Werner, Heather Bullock and
Julian Fernald, The Effects of Pair Programming on
Performance in an Introductory Programming Course,
Proceedings of the Thirty Third Technical Symposium n
Computer Science Education, SIGCSE 2002, ACM Press
(2002).

[5] Ratcliffe, M.B., J. Woodbury and L.A. Thomas, A
Pedagogically Driven, Directed Learning Environment,
Proceedings of the Second Annual Conference of the
LTSN Centre for Information and Computer Sciences,
LTSN-ICS (2001).

[6] Thomas, L.A., M.B. Ratcliffe, J. Woodbury and E.
Jarman, Learning Styles and Performance in the
Introductory Programming Sequence,Proceedings of
SIGCSE 2002, ACM Press (2002).

[7] Weber-Wulff, Debora, Combating the Code Warrior: A
Different Sort of Programming Instruction,Proceedings
of ITiCSE 2000, ACM Press (2000).

[8] Weinberg, G.M., The Psychology of Computer
Programming. New York,Van Nostrand Reinhold (1971)

[9] Williams, Laurie, Robert R. Kessler, Ward Cunningham
and Ron Jeffries, Strengthening the Case for Pair-
Programming,IEEE Software(July/Aug 2000).

[10] Williams, Laurie and Robert R. Kessler, Experimenting
with Industry's "Pair-Programming" Model in the
Computer Science Classroom,Journal of Computer
Science Education(March 2001)

